If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2+10v-1140=0
a = 1; b = 10; c = -1140;
Δ = b2-4ac
Δ = 102-4·1·(-1140)
Δ = 4660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4660}=\sqrt{4*1165}=\sqrt{4}*\sqrt{1165}=2\sqrt{1165}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1165}}{2*1}=\frac{-10-2\sqrt{1165}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1165}}{2*1}=\frac{-10+2\sqrt{1165}}{2} $
| 2x+8=78° | | 180=4x+14 | | a/4/a=1/4 | | 51=3x17 | | 20d-2d=-20+2d | | (y)^2+2y+2=0 | | a/2+a/2=a | | 3a+6=2a+21 | | 2x-3=-3+3 | | (6x–2)=(3x+13) | | 12d-3=d+3 | | 32-(x+6)=19+(2x+1) | | x+120+x+70+2x+30+4x-60=360 | | 10x-70=4x-4•16 | | 8x+6=-10x+96 | | 85=5x17 | | 4x-4=7x-19 | | 294=12x/2 | | 20t-5=5t | | X=12x/2 | | 13+m=30 | | 4x-4+15-2x+3x-6+2(x-1)+2(2x-2)=54 | | 4w-3=19 | | (2L+20)+2w÷.25=44 | | t-10=14 | | 5-9x=75 | | 5q=-45 | | 10y-16=8y-10 | | 7=16-5m/3 | | (2L+10)+(2w÷.25)=44 | | 3x+9=-24x | | 0.5)b+7(=1.5 |